
www.manaraa.com

Design and Analysis of Physical Design Algorithms*

Majid Sarrafzadeh Elaheh Bozorgzadeh Ryan Kastner Ankur Srivastava

Computer Science Department
University of California, Los Angeles
Los Angeles, California 90095-1596

(Contact: majid@cs.ucla.edu)

ABSTRACT
We will review a few key algorithmic and analysis concepts
with application to physical design problems. We argue that
design and detailed analysis of algorithms is of fundamental
importance in developing better physical design tools and
to cope with the complexity of present-day designs.

1. INTRODUCTION
Problems in physical design are getting more complex and are of
fundamental importance in solving present-day design problems.
Full understanding of the problems and algorithm analysis of
them are essential to making progress. Whereas problems are
getting harder (e.g. by need for concurrent optimization, finer
geometries, and larger problems) algorithms to cope with them
have not been designed at the same rate.

A number of fundamental physical design algorithms have been
developed in the past three decades. Examples are maze running
and KL-FM partitioning [7, 8, 23, 24]. They are both in the heart
of current CAD tools. A number of existing techniques, used
heavily in current CAD tools, have not been fully analyzed. For
example quadratic programming and hierarchical placement are
used purely as a heuristic and their analysis is still open. Yet there
are problems that are far from being understood. Researchers have
started only very recently to study them. Examples are congestion
estimation and minimization during placement.

A heuristics is a good starting point for solving a problem,
however, it normally fails to perform well in a changing or a more
complex scenario (e.g., hot-spot removal by annealing). To
continue making effective CAD tools, we need to study problems
deeper, analyze them thoroughly, and base the proposed heuristics
on the performed analysis.

Here we will look at several algorithm design and analysis tools
and concepts. The methods and concepts that we will point out in
this paper are used less frequently in physical design tools.

This paper is organized as follows. In Section 2, it is shown how
problem transformation is used to devise a new algorithm. Section
3 explains how proof of NP-Completeness of hard problems is
useful in generating efficient algorithms to solve those problems.
In Section 4, we explain how to obtain the power of a greedy
method through the proof of its correctness. In Section 5, we
describe that more global view to a problem can help improve the
greedy algorithms. Approximation algorithms and advantages of
analyzing the performance of heuristic methods are explained in
Section 6. In Section 7, probabilistic algorithms and their ability
to provide solution quality bounds are presented. In Section 8,
some conclusions are given.

2. ON PROBLEM TRANSFORMATION:
UPPER-BOUND ANALYSIS
Problem transformation is an effective methodology for solving a
problem. Mathematicians have used transformation for many
years and more recently by algorithm designers. Problem
transformation can be used to devise a new algorithm (upper-
bound) or to prove the complexity of a problem (lower-bound). In
this section we will give an example of n problem transformation.

The graph-partitioning problem is to partition the vertices of a
graph in k into roughly equal parts, such that the number of edges
connecting vertices in different parts is minimized. In this paper,
to simply the presentation, we use a graph model.

Formally, a graph G = (V, E) is defined as a set of vertices V and a
set of edges E, where each edge is a subset of the vertex set V. The
graph partition problem is NP-complete. Recently, a number of
researchers have investigated a class of algorithms that can give a
reasonably good solution for the bi-partition problem [7, 8, 12,
13]. Most of these algorithms are more or less based on the FM
algorithm, which was first proposed by Fiduccia and Mattheyses
in 1982 [7]. FM algorithm is a very effective heuristic for the bi-
partition problem. However, algorithm designers are more and
more interested in the general k-way partition problem where k is
greater than two.

*This work was partially supported by NSF under Grant #CCR-
0090203.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

www.manaraa.com

When k is greater than 2, there are three typical methods to solve
the k-way partition problem. Method A is a direct extension of 2-
way FM-like algorithms. In the 2-way FM-like algorithms, each
node can be moved to only one definite destination partition. A
gain will be associated to this move. In the k-way partition
problem, each node has k-1 possible destination partitions. Thus
method A is based on the 2-way FM algorithm while allowing
moving any node to any of the k-1 partitions. A node is picked to
move if it results in the biggest gain in the total cut-cost. Method
B is a all-way bi-partition improvement. It starts with an initial
(and arbitrary) k-way partition. It picks two partitions from the
total k partitions at a time and performs bi-partitioning to improve
the all-way cut-cost between these two partitions. Finally, method
C is a hierarchical approach. It will recursively bi-partition the
target graph until we have k partitions.

Suaris and Kedem used method A on a 4-way partition problem
[14, 15]. For k greater than 4, this method A is rarely used since
it needs a lot of memory and is slow. In practice, the all-way bi-
partition approach (Method B) and the hierarchical approach
(Method C) are often used. The question is that which one is a
better way to solve the k-way partition problem. In the original
Kernighan-Lin's paper [8], the author argues that the hierarchical
approach is a very greedy method. Intuitively, the hierarchical
approach cannot recover the possible mistakes made by the
previous cuts. Thus it will easily get stuck into a local minimum.
They also argue that given enough time, the all-way bi-partition
method should be able to explore most part of the solution space.
Thus it has a better chance to get a good result.

Theoretical analysis is done on the all-way bi-partition approach
and the hierarchical approach assuming we use a ? -approximation
bi-partition heuristic. If the optimal cut cost for a k-way partition
problem is C, we prove that the cut cost from the hierarchical
approach has an upper bound of ? C?log k while the cut cost from
the all-way bi-partition approach has an upper bound of ? C?k
where k is the number of partitions.

Thus, not only a multi-way partitioning problem can be
transformed to a sequence of 2-way (and thus, make use of
available algorithms and tools for 2-way partitioning), it can be
proved that the final solution is provably good.

3. PRACTICAL IMPLICATION OF
LOWER-BOUND ANALYSIS
Stephen Cook first introduced the theory of NP-Completeness in a
paper, 1971, entitled “The Complexity of Theorem Proving
Procedures” [20]. He proved that one particular problem in NP,
called the satisfiability problem has the property that every
problem in NP can be can be polynomially reduced to it. Hence if
the satisfiability problem can be solved polynomially, so can
every other problem in NP. Also if one problem in NP is
intractable, then satisfiability problem must also be intractable.
Subsequently Richard Karp in 1972 proved that the decision
problems of various combinatorial optimization problems (like
traveling salesman) are just as hard as satisfiability problem (SAT)
[21]. Since then a lot of problems have been proved to be
equivalent in difficulty to these problems. Such problems, which

are the hardest in the set NP are called NP-Complete problems.
The big question which is still open in the field of mathematics
and computer science is whether or not NP-Complete problems
are intractable. Although no proof exists about the implications of
NP-Completeness on intractability, the knowledge of problem
being NP-Complete suggests that a major breakthrough will be
needed to solve it with a polynomial time algorithm. For more
details on the theory of NP-Completeness we refer the reader to
[18].

Many problems in VLSI-CAD are NP-Complete. Since NP-
Completeness suggests that finding a polynomial time algorithm
for the problem is unlikely, most people in our community have
begun to somewhat underestimate the potential of proving
problems NP-Complete. We strongly believe that knowledge of
NP-Completeness can have two significant impacts on the course
of research. First it points out that the research must be directed
towards finding efficient heuristics and not optimal polynomial
time algorithms. Second, the whole process of proving problems
NP-Complete gives a deep insight into the problem. The actual
reason because of which the problem gets NP-Complete becomes
known. This information along with the discovery of relationship
between problems (the NP-Complete problem that gets
transformed to our problem) often can provide useful information
to algorithm designers. Through this section we intend to show
that proofs of NP-Completeness are not as un-interesting as the
research community believes. Using an example we demonstrate
that this is indeed the case.

We refer the reader to a paper by Murgai “On the Global Fanout
Optimization Problem” [19]. The main contribution of this paper
is the proof of NP-Completeness of the global fanout optimization
(buffer insertion) problem. The author assumed the load
dependent delay model to be valid. In this delay model each gate
has a load sensitivity factor ? , which is different for different
input pins. The delay from an input pin i to output is given by

?(i) = ? (i) + ? (i) * Cout,

where ? (i), ? (i), and Cout are intrinsic delay, load sensitivity
factor, and capacitive loading, respectively.

The proof of NP-Completeness transforms the 3SAT problem to
an instance of the buffer insertion problem. In order to make a
cogent explanation we outline some details of the transformation.
Following is the decision problem associated with buffer
insertion: Given a combinational circuit with Pis and Pos and
gates. The topology of the nets that connect the gates is fixed.
Given the required time r for all primary outputs, a buffer b and a
number D. Does there exist a buffering of nets such that the
required time at each PI is at least D.

The paper proves that 3SAT is satisfiable iff there exists a
buffering of nets such that the required time constraints at all Pis
are met. Each variable in the 3SAT problem was transformed to a
circuit which had the structure shown in Figure 3.

Each clause also corresponds to a gate. Gate Bi in the variable
circuit structure (shown above) has two kinds of input pins. If it
appears in the positive phase in a clause, then we use the input
pins on the left side of the gate else we use the ones on the right

www.manaraa.com

side. If the net connected between gates Bi and Ai, is buffered
then it corresponds to setting the truth value of the corresponding
variable as TRUE else FALSE. Figure 3.1(A) shows that if that
net is not buffered then the required time at certain input pins is
larger than others. Similarly this behavior becomes reverse if that
net is buffered, which is shown in the Figure 3.1 (B). Because of
this phenomenon, if there was no truth assignment to 3SAT, there
was no buffering solution to satisfy the primary input constraint.
Similarly if there existed a solution to 3SAT, there existed a
solution for the buffer insertion instance.

A similar observation is also made by the author himself. If a
buffered solution of the net connected to the output of a gate is
optimal w.r.t a particular input pin, it may not be optimal w.r.t.
other input pins. The reason for this is that each input pin has a
different value for ? . Hence there are conflicting choices and the
problem becomes NP-Complete. This conclusion was drawn
directly from the transformation used in the proof of NP-
Completeness. The buffering of net connected to gate Bi was
beneficial for some input pins (in terms of required time) while
for others it was not. The next question is whether we can use this
information to say something about optimality of algorithms. The

author presents sufficient conditions for which there exists an
optimal algorithm to solve the problem. If the buffered solution of
the net is such that it is the best solution for all the input pins,
then the global problem is polynomially solvable (if the local
problem is polynomially solvable). For every net, find a locally
optimal buffering solution. Since this solution is optimal for all
the input pins, the global algorithm can be optimally solved too.
Such conclusions were made directly from the proof of NP-
Completeness. The proof also suggests that sub-structures or sub-
problems in which ? does not vary too much, the effectiveness of
the algorithm is more, thus suggesting ways of partitioning the
circuit.

The above discussion shows that proofs of NP-Completeness can
point in useful directions. They can assist the algorithm designers
in finding right ways of solving the problem.

4. PROOF OF A GREEDY ALGORITHM

In this section, we show the power of greedy algorithms through
proof of correctness. As an example, we use the Prim’s well-
known algorithm for minimum spanning trees (MST) [10].

A greedy algorithm always makes a locally optimal choice in
hope that this leads to a globally optimal solution. Of course,
greedy algorithms do not always find a globally correct solution.
But, it is quite powerful and works for a well for a wide variety of
problems e.g. Dijkstra’s shortest path algorithm and Prim’s MST
algorithm. A correct greedy algorithm is often the simplest, most
elegant algorithm for the problem.

An optimization problem that can be greedily solved often
exhibits two properties: optimal substructure and greedy choice.
Optimal substructure means that an optimal solution to the
problem contains optimal solutions to sub-problems. The greedy
choice property means that a globally optimal solution can be
built using a series of locally optimal choices. Matroid theory can
be used to determine if an algorithm can be solved through a
greedy method [11].

Prim developed a correct greedy algorithm for the minimum
spanning tree problem. The algorithm iteratively grows a tree by
greedily selecting edges to grow the tree. A safe edge, which adds
minimum weight to the tree, is added at each step of the
algorithm. The algorithm completes when all of the vertices are a
part of the tree.

Prim’s algorithm exhibits optimal substructure as the sub-tree
grown over the course of the algorithm is an MST over the set of
points that it spans at any instant. Also, it demonstrates the
greedy choice property since it adds the edge, which at that instant
minimizes the current spanning tree; it has no regard for the
global implications of choosing an edge.

Prim’s algorithm is useful for solving the NP-Complete problem
of finding the Steiner Minimum Tree (SMT). Many SMT
algorithms use Prim’s algorithm as basic part of their method.
Based on the relationship between MST and SMT (the 2/3 bound)
all Steiner heuristics based on MST enjoy a good approximation

 r = 2 r = 0

r = 3? = 1, ? =0.1

Figure 3.1(B)—Circuit Corresponding to Variable Xi

r = 5

 ? =3 ? =0

r = 0 r=2

Ai

Connected to Clause Gates

In which the variable is in
positive phase

Connected to Clause Gates

In which the variable is in
negative phase

? = 0 , ? =0, ?=10

? = 1

? =0.4

Figure 3.1(A)—Circuit Corresponding to Variable Xi

Bi

www.manaraa.com

bound. Indeed, most effective SMT heuristics used in practiced
are based on MSTs.

Correct greedy algorithms play an important role in solving NP-
Complete problems. Examples, as mentioned abover, are Steiner
tree heuristics. A number of other greedy algorithms have been
developed and are being used in industry. The only drawback of
these techniques is that they normally not analyzed well.

5. GREEDY ALGORITHM VS GLOBAL
ANALYSIS
In this section we look at a popular greedy algorithm and show a
more effective algorithm can be designed once we view the
problem more globally.

Consider a directed acyclic graph G = (V, E). A set of sources (or
primary inputs) I of G is a set of vertices without incoming edges,
and a set of sinks (or primary outputs) O is a set of vertices
without outgoing edges. Given |I| signals each starting from a
source Ii at time a(Ii), we consider their propagation towards O
along directed edges and vertices in G, assuming that each vertex
v ? V is associated with a delay d(v) which represents the time it
takes for a signal to pass through v and that there is no delay on
edges. The latest time of signals to arrive at the output of any
vertex v ? V \ I is recursively given by

a(v) =))()((max
)(

vdua
vFIu

?
?

, (1)

where FI(v) is a set of (immediate) predecessors (or fanins) of v,
and a(v) is called arrival time of v. If signal at a sink Oj is
required to arrive by time r(Oj), the signal at output of any vertex
v ? V \ O is required to arrive by time

))()((min)(
)(

wdwrvr
vFOw

??
?

, (2)

where FO(v) is a set of (immediate) successors (or fanouts) of v,
and r(v) is called required time of v. Slack, s(v), for vertex v is the
difference between r(v) and a(v), i.e., s(v) = r(v) – a(v).

A vector of delays D(V) = [d(v1) d(v2) … d(vn)] (where n = |V|) is
called delay distribution of G. Similarly, a vector of slacks S(V) =
[s(v1) s(v2) … s(vn)] is called slack distribution, and |S(V)| =

?
?

n

k
kvs

1

)(is called total slack (denoted by St). G is said to be

(timing) safe if and only if S(V) ? 0 (unless otherwise specified, a
graph under consideration is initially safe. In fact, an unsafe graph
can be made safe by, for example, increasing required time sinks).
If an incremental delay ? d(v) > 0 is assigned to any vertex v ? V
, the slack distribution will be reduced, depending upon the
topology of G. In other words, we are assigning a slack to, or
obtaining a budget from, the graph. In general, we define a budget
management (or slack assignment) to be a vector of incremental
delays ? D(V) = [? d(v1) ? d(v2) … ? d(vn)] > 0 which updates

delay distribution from D(V) to D? (V) = D(V) + ? D(V) and hence
updates slack distribution from S(V) to S? (V) (The terms “budget
management” and “slack assignment” will be used
interchangeably throughout the paper). If G is still safe (i.e., S? (V)
? 0), then the budget management is said to be effective and

|? D(V)| = ?
?

?
n

k
kvd

1

)(is called effective budget on G. Note that

the amount of possible effective budget management for G can be
exponential function of its size n. An optimal budget management
(denoted by ? mD(V)) is an effective budget management which
results in maximum effective budget Bm = |? mD(V)|. Figure 5.2.
shows a directed acyclic graph and an optimal budget
management thereof.

The well-known zero-slack algorithm (ZSA) for slack assignment
has been proposed [1] with the goal of generating performance
constraints for VLSI layout design. Some improved versions of
ZSA can be found in [2, 3]. In [4], a convex programming
problem formulation was given to tackle a delay budgeting
problem, which is equivalent to slack assignment. While these
prior works focus on applications in VLSI (very-large-scale
integrated circuits) layout, the main disadvantage is that they are
not able to provide an “optimal” budget management. In this
section we analyze some characteristics of slack, present an
optimal algorithm for budget management, and extend its
applications to more general optimization domains.

First we review ZSA [1] briefly. The basic idea of ZSA is to start
with vertices with minimum slack and locally perform slack
assignment such that their slacks become zero. This process
repeats until the slack of all vertices is zero. More specifically, at
each iteration, ZSA identifies a path on which all vertices have
minimum slack (denoted by smin), then assigns to each vertex an
incremental delay smin / Nmin , where Nmin is the number of vertices
on the path. In Figure 5.2., for example, path (v1, v3, v4) is first
found and each of these three vertices is assigned an incremental
delay of 5/3. The slack of all vertices except v2 in the figure
becomes zero, while s(v2) is updated as 5/3. After assigning an
incremental delay of 5/3 to 2 in second iteration, the slack
distribution is updated to be zero, and the algorithm terminates
with effective budget of 20/3 (note that maximum effective budget
of Figure 5.2. is 10). This example shows that while ZSA is
simple to use and easy to implement, the result is far from optimal
budget management.

As opposed to ZSA, the global algorithm begins with a set of
vertices Vm with maximum slack. Then we construct a transitive
slack-sensitive graph Gt(?) = (Vm , Em

t). Based on discussions in
the above section, a maximum independent set (MIS) [6] of Gt(?)
corresponds to a set of vertices VMIS ? Vm such that the number of
vertices which are slack-sensitive to any vertex v ? VMIS is
minimized. We assign an incremental delay ? to each vertex in
VMIS, and update the slacks of vertices in Vm . This process of
constructing Gt(?), finding MIS and updating slacks continues
until the slack distribution becomes zero. Clearly, each step of the
process contributes ??|VMIS| to final effective budget. Finding an
MIS of Gt(?) is straightforward. This can be done by identifying a
vertex vmin with minimum degree in Gt(?) iteratively. Initially let

www.manaraa.com

VMIS be empty. We add vmin into VMIS and update the graph by
deleting vmin and all its neighbors (together with their associated
edges) from the graph. This procedure continues until the graph
becomes empty.

The pseudo code of our MIS-based algorithm for budget
management is given in Figure 5.1. It has been proved [22] that
MISA produces an optimal budget management, which results in
maximum effective budget of G.

Two well-known applications of budget management are gate
sizing and performance generation during placement.

6. APPROXIMATION ALGORITHMS
One method to solve an NP-hard problem is to develop a heuristic
algorithm. The heuristic method should be able to produce a result

close to optimal solution for the problem. As mentioned earlier
showing a problem to be NP-hard is an important theoretical
effort. However the problem needs to be solved. The goal is to
find a feasible solution close to optimal solution that can be
computed efficiently. Hence there is trade-off between optimality
and tractability [17]. An ? -Approximation algorithm for
minimizing problem P produces a solution for any instance I ? P
that is at most ? times the optimum solution [17]. It is good to
study the closeness and approximation of existing algorithms.
Assume performance of an algorithm is observed only by running
on a set of benchmark circuits. Therefore different algorithms for
a given problem can be compared only with a set of samples. Also
results cannot be a good guidance to improve the performance of
the methods. We need to evaluate the quality of heuristic
algorithms. Using analysis methods for approximation algorithms
may result in deriving lower bounds or evaluating limits of
approximability. Lower bounds on approximation algorithms help
us know whether there is a better approximation solution.
However, most of the times it is not easy to analyze the lower
bounds of hard problems. In [17], there are examples of such
problems for which no lower bounds have been obtained yet.

Many of heuristics for problems in VLSI CAD can be easily
analyzed and theoretically understood. This may lead to ability to
obtain an algorithm closer to optimum solution.

As an example we analyze the performance of a simple clustering
algorithm proposed by Gonzalez[16]. Gonzalez proposed a O(kn)
algorithm for a clustering problem. k is the number of clusters and
n is the number of nodes to be clustered. The algorithm is simple
and can be easily analyzed. He has shown that the proposed
heuristic gives a solution within two times the optimal solution.

The problem is formally stated as: Given an undirected weighted
graph G, an objective function f, and integer k, partition the graph
into k clusters such that the value of objective function
corresponding to the partition is minimized. Clustering problem
formulated above is NP-hard [16, 17]. This problem is studied
well in detail in [16]. The graph is assumed to be a complete
graph. The objective is minimizing the maximum weight of an
edge that is inside a cluster. Also another important assumption is
that weights of the edges in graph G satisfy the triangle inequality.

The algorithm works as follows: All the nodes are initially
assigned into one cluster. One node is arbitrarily chosen as a head
of the cluster. A node that has the longest distance from the head
is moved to a new cluster. That node will be labeled as the head of
the new cluster. Basically this algorithm tries to minimize the
distance of each node inside a cluster to the head of the cluster.
Therefore important task is to choose the heads for clusters. If
there is a node whose distance from the head of the new cluster is
less than its distance from the head of the cluster it belongs to, the
node will be moved to the new cluster. At each stage i, node vi
that has the maximum distance from the head of its cluster bi is
moved to new cluster bi+1 as the head of cluster bi+1. Any node in
any other clusters that have shorter path to new head vi compared
to its distance from the head of the current cluster it belongs to
will be moved to cluster bi+1. Each stage generates one more

Maximum-Independent-Set based Algorithm (MISA)
/* An algorithm for finding budget management */
Input: graph G = (V, E) and timing constraint Tspec

Output: budget management ? D(V)
begin
Compute slack for each vertex v ? V, and find maximum
slack sm

 Initialize ? D(V) = 0
 while (sm > 0)
 Construct a transitive slack-sensitive graph
 Gt(?) using Gt(?)-algorithm;
 Find maximum independent set VMIS of Gt(?)
 Assign an incremental delay ? to each vertex in
 VMIS, i.e., ? d(w) ? ? d(w) + ? , ? w ? VMIS

 Update slack distribution and sm

 end
Figure 5.1- Maximum-Independent-Set based Algorithm

D(V) = [0 0 0 3 2 3 2 0 0], ? mD(V) = [0 0 3 0 1 0 1 0 0]

S(V) = [0 0 4 0 1 0 2 0 2], St = | S(V) | = 9 Bm = |? mD(V)| = 5

Figure 5.2- Optimal Budget Management

v1

v2

v3

v4

v5 v6

v7

v8

v9

0/0/0

0/0/0

0/4/4

3/3/0

2/3/1 6/6/0

4/6/2

6/6/0

4/6/2

I1

I2

I3

O1

O2

www.manaraa.com

cluster. Therefore k clusters are constructed by repeating the same
process for k times.

It is simple to show that the solution generated by this algorithm
has an objective value within two times the value for optimum
solution, OPT(G) [16]:

Lemma 6.1. Algorithm proposed in [16] generates a solution
with an objective function value ? 2? OPT(G).

Proof. Suppose node vj in cluster bj has the longest distance from
the head of cluster bj. We assume that distance is h. According to
triangle inequality, the maximum distance of any two nodes in
cluster bj is at least 2h. Since node vj never becomes a head of any
new cluster, it means that the distance of node vj to the head of
any other cluster is ? h. Therefore the heads of clusters together
with node vj generate a (k+1)-clique of weight h. In this (k+1)-
clique the distance of any two nodes is ? h. According to lemma
6.2, the objective value of optimal solution is at least h. This
concludes that the objective function value of the current solution
is at least 2h, hence two times the objective value for optimal
solution.

Lemma 6.2. If there is a (k+1)-clique of weight h for G, the
OPT(G)? h [16].

In [16] it is also proven that computed approximation bound is the
best possible approximation for such a clustering problem if P ?
NP. Referring to [17], a polynomial ? -approximation algorithm is
best possible if the problem of approximation within (? -?) is NP-
Complete for any ?? 0. Gonzalez [16] has proven that the problem
of approximation within 2-? is NP-Complete.

It is very important to analyze approximation algorithms. If the
approximation derived for an algorithm is not sufficiently strong,
we may instead use a simple method that has a strong guarantee.
Then we can improve the simple algorithm by adding more local
optimization techniques. However most of the times relatively
strong approximations for algorithms can be obtained without
much computational effort. The analysis for a simple clustering
algorithm described in this section is such an example.

7. PROBABILISTIC ALGORITHMS
In this section, we gave an overview of probabilistic algorithms
and discuss their merits. We examine a multi-way cut algorithm
by Karger [6], which elegantly proves through probabilistic
analysis many properties associated with his algorithm. (For n
overview of probabilistic algorithms see [9].)

A probabilistic algorithm is, quite simply, algorithm that makes
random choices during execution. It is also known as a random
algorithm. With the use of probability theory, probabilistic
algorithm can yield expected runtimes as well as bounds of the
solution quality with uncertainty (hopefully small). Probabilistic
algorithms often run faster than the corresponding deterministic
algorithms. Also, many probabilistic algorithms are easier to

implement and describe than deterministic algorithms of
comparable performance [9].

Karger uses the simple graphical method of contraction to create a
powerful clustering algorithm. Given two vertices v1 and v2,
remove v1 and v2, replacing them with a new vertex v. The set of
edges incident on v are the union of the set of edges incident to v1
and v2. Edges from v1 and v2 with mutual endpoints, e.g. e1 = (v1,
x) and e2 = (v2, x), may or may not be merged into one edge;
Karger does not merge them. Karger removes any edges between
v1 and v2 to eliminate self-loops. The algorithm that Karger uses
for clustering is shown in Figure 7.1.

As you can see, the algorithm is very simple. Arguably, the
“simplest” deterministic partitioning (essentially equivalent to

clustering when k = 2) algorithms are the well known KL [8] and
FM [7] algorithms. Obviously, the probabilistic algorithm is
easier to describe and implement compared to FM or KL.

The most intriguing property of probabilistic algorithms is the
ability to use the “simple” algorithm to prove powerful properties
related to both the algorithm and the problem. Continuing with
our example, Karger proves the following:

Corollary 7.1: If we perform O(n2 log n) independent
contractions to two vertices, we find a min-cut with high
probability. In fact, with high probability we find every min-cut.

Theorem 7.1: Stopping the Contraction Algorithm when r
vertices remain yields a particular minimum r-way cut with
probability at least

11

1
1

1

??

??
?

?
??
?

?
?
?

??
?

?
??
?

?
? r

n
r

n
r

Proof: The key to the analysis is bounding the probability p
that a randomly selected graph edge is from a particular minimal
r-cut. Suppose we choose r –1 vertices uniformly at random, and
consider the r-cut defined by taking each of the vertices as one
member of the cut and all the other vertices as the last member.
Let f be the number of edges cut by this random partition, and m
the number of the graphs edges. The number of edges we expect
to cut is

Contraction algorithm for clustering

Input: directed acyclic graph G = (V, E), number of
partitions k
Output: k sets of vertices
begin
 while |V| > k
 do choose and edge e(u,v) at random

contract both u and v
end

Figure 7.1 – Karger’s contraction algorithm for clustering

www.manaraa.com

? ? ,
1
1

1
1

11 m
n
r

n
r

fE ?
?

?
?
?

?
?
?
?

?
?
?

?
?

??
?
?

?
?
? ?

???

since the quantify in brackets is just the probability that a single
edge is cute. Since f can be no less than the value of the minimal
r-cut, E[f] must also be no less than the min-cut. We can
therefore deduce that the probability that a particular minimum r-
cut survives the reductions process until there are r vertices
remaining is at least

?
??

?
?
?

?
?
?

?
?

??
?
?

?
?
? ?

?
n

ru u
r

u
r

1 1
1

1
1

1

??
????

?
?
?

?
?
?

?
?

??
?
?

?
?
? ?

??
n

ru

n

ru u
r

u
r

11 1
1

1
1

1

11

1
1

1

??

??
?

?
??
?

?
?
?

??
?

?
??
?

?
?

?
r
n

r
n

r

The previous corollary and theorem give probabilistic properties
related to the algorithm itself. Unlike most existing
partitioning/clustering algorithms, Theorem 7.1 gives bound on
the solution quality. Since benchmarks are at a premium in the
CAD community, bounds on solution quality are particularly
important. It is often the case, that papers “prove” their
algorithms to be better than existing algorithms based solely on
small amount of benchmarks (which are often outdated). While
there is huge need for better benchmarking – which is another
subject altogether – in the community, giving solution quality
bounds can not only be used as definitive proof for algorithm
supremacy, it can also gave great insight into the problem itself.
Consider the following corollaries:

Corollary 7.2: The number of minimum r-cuts of a graph is no
more than O(n2(r-1)).

Corollary 7.3: The number of r-cuts within a factor of k of the
optimum is O(n2k(r-1)).

Both are a consequence of Theorem 7.1. And both give
tremendous insight into the clustering problem.

Probabilistic algorithms are often simple to derive and implement.
Yet, through the use of probability theory, they provide a
powerful mechanism for provide solution quality bounds.
Furthermore, they allow identification of some fundamental
properties of the problem.

8. CONCLUSION
In this paper, we looked into the algorithmic and analysis aspects
of some fundamental CAD problems. We argued that careful
analysis of algorithms is essential for determining the best
approach to the problem. Specifically, we discussed the use of
problem transformation to solve problems with exhibit similar
nature. We discussed a method of problem transformation by

extending 2-way partitioning algorithms to solve the k-way
partitioning problem.

We also discussed the implication of lower bound problem
transformation. We assert that proofs for NP-Completeness not
only show the complexity of the problem, but also give
tremendous insight into the computational bottleneck of the
problem. This allows us to produce better heuristics to solve the
problem.

Although there are effective (and at-times optimal) greedy
algorithms there are many cases that an algorithm with a more
global view produces much better results. Although global
algorithms are normally slower than greedy techniques, they can
shed new lights on the complexity of physical design problems.
Greedy algorithms are often the simplest, most eloquent
algorithms for solving a problem. Therefore, analysis of
computational complexity and solution quality of greedy
algorithms is straightforward compared to other types of
algorithms.

Approximation algorithms give a bound on their solution quality.
Analyzing and theoretically understanding approximation
algorithms helps us understand the problems and improve the
performance of the existing methods.

We discussed Karger’s probabilistic algorithm for clustering. The
algorithm uses probabilistic theory to show that it is correct with a
small uncertainty. Perhaps more importantly, the algorithm gave
insight into the problem. Karger was able to prove properties
about the problem using his algorithm and probability theory.

9. REFERENCES

[1] R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa,
“Generation of Performance Constraints for Layout,”
IEEE Transactions on Computer-Aided Design, CAD-
8(8), pp.860-874, August 1989.

[2] T. Gao, P. M. Vaidya, and C. L. Liu, “A New
Performance Driven Placement Algorihm,” in
Proceedings of International Conference on
Computer-Aided Design, pp.44-47, 1991.

[3] H. Youssef and E. Shragowitz, “Timing Constraints for
Correct Performance,” in Proceedings of International
Conference on Computer-Aided Design, pp.24-27,
1990.

[4] G. E. Tellez, D. A. Knol, and M. Sarrafzadeh, “A
Graph-Based Delay Budgeting Algorithm for Large
Scale Timing-Driven Placement Problems,” in
Proceedings of fifth ACM/SIGDA Physical Design
Workshop, pp.234-240, April 1996.

[5] R. H. Moehring, “Graphs and Orders: the Roles of
Graphs in the Theory of Ordered Sets and Its

www.manaraa.com

Applications”, Published by D. Reidel Publishing
Company, Edited by I. Rival, New York and London,
pp.41-101, May 1984.

[6] D. R. Karger, “Global Min-cuts in RNC, and Other
Ramifications of a Simple Min-cut Algorithm, in
Proceedings of the ACM-SIAM Symposium on Discrete
algorithms, 1993.

[7] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time
Heuristic for Improving Network Partitioning”, in
Proceedings of the Design Automation Conference, pp
175-181, 1982.

[8] B. W. Kernighan and S. Lin, “An Efficient Heuristic
Procedure for Partitioning Graphs”, in Bell Systems
Technical Journal, 49(2): 291-37, 1970.

[9] R. Motwani and P. Raghavan, “Randomized
Algorithms”, Published by Cambridge University
Press, Cambridge UK and New York, 1995.

[10] R. C. Prim, “Shortest Connection Networks and Some
Generalizations”, in Bell System Technical Journal,
36(6):1389-1401, 1957.

[11] B. Korte and L. Lovasz, “Mathematical Structures
Underlying Greedy Algorithms”, in Fundamentals of
Computation Theory, 1981.

[12] C. K. Cheng and Y. C. A. Wei, “An Improved Two-
way Partitioning Algorithm with Stable Performance”,
in IEEE Transactions on Computer Aided Design,
10(12): 1502-1511, 1991.

[13] L. Hagen and A. B. Kahng, “Fast Spectral methods for
Ratio Cut Partitioning and Clustering”, in IEEE/ACM
International Conference on Computer-Aided Design,
1991.

[14] P. R. Suaris and G. Kedem, “Quadrisection: A New
Approach to Standard Cell Layout”, in IEEE/ACM
Design Automation Conference, pp. 474-477, 1987.

[15] P. R. Suaris and G. Kedem, “Standard Cell Placement
by Quadrisection”, in IEEE/ACM International

Conference on Computer-Aided Design, pp. 612-615,
1987.

[16] T. F. Gonzalez, “Clustering to Minimize the Maximum
Intercluster Distance”, in Theoretical Computer
Science, 38:293-306, 1985.

[17] D. S. Hochbaum, “Approximation Algorithms for NP-
Hard Problems”, PWS Publishing Company, 1995.

[18] M. R. Garey and D.S. Johnson, “Computers and
Intractability: A Guide to he Theory of NP-
Completeness”, W.H. Freeman and Company-1979.

[19] R. Murgai, “On the Global Fanout Optimization
Problem”, in International Conference on Computer
Aided Design, Nov 1999, pages 511-515

[20] S. A. Cook, “The Complexity of Theorem-proving
Procedures”, in Proceedings of 3rd Anniversary of
ACM Symposium on Theory of Computing, pp 151-
158, 1971.

[21] R. M. Karp, “ Reducibility Among Combinatorial
Problems”, in R. E. Miller and J. W. Thatcher,
Complexity of Computer Computations, Plenum Press,
pp. 85-103, 1972.

[22] C. Chen and M. Sarrafzadeh, “Potential Slack: An
Effective Metric of Combinational Circuit
Performance”, in ACM/IEEE International Conference
on Computer-Aided Design, 2000.

[23] E. F. Moore, “Shortest Path Through a Maze”, in
Kluwer Proceedings of the International Symposium
on Switching Circuits, 1959.

[24] C. Y. Lee, “An Algorithm for Path Connection and its
Applications”, in IRE Transactions on Electronic
Computers, 1961.

